2,463 research outputs found

    Discovery of a Large-scale Wall in the Direction of Abell 22

    Full text link
    We report on the discovery of a large-scale wall in the direction of Abell 22. Using photometric and spectroscopic data from the Las Campanas Observatory and Anglo-Australian Telescope Rich Cluster Survey, Abell 22 is found to exhibit a highly unusual and striking redshift distribution. We show that Abell 22 exhibits a foreground wall-like structure by examining the galaxy distributions in both redshift space and on the colour-magnitude plane. A search for other galaxies and clusters in the nearby region using the 2dF Galaxy Redshift Survey database suggests that the wall-like structure is a significant large-scale, non-virialized filament which runs between two other Abell clusters either side of Abell 22. The filament stretches over at least >40 Mpc in length and 10 Mpc in width at the redshift of Abell 22.Comment: 6 pages, 4 figures, accepted for publication in MNRAS letter

    Galaxy threshing and the origin of intracluster stellar objects

    Full text link
    We numerically investigate dynamical evolution of non-nucleated dwarf elliptical/spiral galaxies (dE) and nucleated ones (dE,Ns) in clusters of galaxies in order to understand the origin of intracluster stellar objects, such as intracluster stars (ICSs), GCs (ICGCs), and ``ultra-compact dwarf'' (UCDs) recently discovered by all-object spectroscopic survey centred on the Fornax cluster of galaxies. We find that the outer stellar components of a nucleated dwarf are removed by the strong tidal field of the cluster, whereas the nucleus manages to survive as a result of its initially compact nature. The developed naked nucleus is found to have physical properties (e.g., size and mass) similar to those observed for UCDs. We also find that the UCD formation processes does depend on the radial density profile of the dark halo in the sense that UCDs are less likely to be formed from dwarfs embedded in dark matter halos with central `cuspy' density profiles. Our simulations also suggest that very massive and compact stellar systems can be rapidly and efficiently formed in the central regions of dwarfs through the merging of smaller GCs. GCs initially in the outer part of dE and dE,Ns are found to be stripped to form ICGCs.Comment: 6 pages and 3 figures (JPG file for Fig. 1), in the proceedings of IAU 217 ``Recycling intergalactic and interstellar matter'

    Cluster Galaxy Evolution from a New Sample of Galaxy Clusters at 0.3 < z < 0.9

    Full text link
    (Abridged) We analyze photometry and spectroscopy of a sample of 63 clusters at 0.3<z<0.9 drawn from the Las Campanas Distant Cluster Survey to empirically constrain models of cluster galaxy evolution. Specifically, by combining data on our clusters with those from the literature we parametrize the redshift dependence of 1) M*_I in the observed frame; 2) the V-I color of the E/S0 red sequence in the observed frames; and 3) the I-K' color of the E/S0 red sequence in the observed frame. Using the peak surface brightness of the cluster detection, S, as a proxy for cluster mass, we find no correlation between S and M* or the location of the red envelope in V-I. We suggest that these observations can be explained with a model in which luminous early type galaxies (or more precisely, the progenitors of current day luminous early type galaxies) form the bulk of their stellar populations at high redshift (>~ 5) and in which many of these galaxies, if not all, accrete mass either in the form of evolved stellar populations or gas that causes only a short term episode of star formation at lower redshifts (1.5 < z < 2). Our data are too crude to reach conclusions regarding the evolutionary state of any particular cluster or to investigate whether the morphological evolution of galaxies matches the simple scenario we discuss, but the statistical nature of this study suggests that the observed evolutionary trends are universal in massive clusters.Comment: 35 pages, accepted for publication in Ap

    A Search for Low Surface Brightness Structure Around Compact Narrow Emission Line Galaxies

    Full text link
    As the most extreme members of the rapidly evolving faint blue galaxy population at intermediate redshift, the compact narrow emission line galaxies (CNELGs) are intrinsically luminous (-22 < M_B < -18) with narrow emission linewidths (30 < \sigma < 125 km/s). Their nature is heavily debated: they may be low-mass starbursting galaxies that will fade to present-day dwarf galaxies or bursts of star formation temporarily dominating the flux of more massive galaxies, possibly related to in situ bulge formation or the formation of cores of galaxies. We present deep, high-quality (~0.6 - 0.8 arcsec) images with CFHT of 27 CNELGs. One galaxy shows clear evidence for a tidal tail; the others are not unambiguously embedded in galactic disks. Approximately 55% of the CNELGS have sizes consistent with local dwarfs of small-to-intermediate sizes, while 45% have sizes consistent with large dwarfs or disks galaxies. At least 4 CNELGs cannot harbor substantial underlying disk material; they are low-luminosity galaxies at the present epoch (M_B > -18). Conversely, 15 are not blue enough to fade to low-luminosity dwarfs (M_B > -15.2). The majority of the CNELGs are consistent with progenitors of intermediate-luminosity dwarfs and low-luminosity spiral galaxies with small disks. CNELGs are a heterogeneous progenitor population with significant fractions (up to 44%) capable of fading into today's faint dwarfs (M_B > -15.2), while 15 to 85% may only experience an apparently extremely compact CNELG phase at intermediate redshift but remain more luminous galaxies at the present epoch.Comment: 16 pages, 14 figures, emulateapj, published in Ap

    Ultra-compact dwarf galaxies: a new class of compact stellar system discovered in the Fornax Cluster

    Get PDF
    We have used the 2dF spectrograph on the Anglo-Australian Telescope to obtain a complete spectroscopic sample of all objects in the magnitude range, Bj= 16.5 to 19.8, regardless of morphology, in an area centred on the Fornax Cluster of galaxies. Among the unresolved targets are five objects which are members of the Fornax Cluster. They are extremely compact stellar systems with scale lengths less than 40 parsecs. These ultra-compact dwarfs are unlike any known type of stellar system, being more compact and significantly less luminous than other compact dwarf galaxies, yet much brighter than any globular cluster.Comment: To appear in IAU Symposium 207: Extragalactic Star Cluster
    • …
    corecore